193 research outputs found

    Correlation of throwing velocity to the results of lower body field tests in male college baseball players

    Get PDF
    Baseball-specific athleticism, potential, and performance have been difficult to predict. Increased muscle strength and power can increase throwing velocity but the majority of research has focused on the upper body. The present study sought to determine if bilateral or unilateral lower-body field testing correlates with throwing velocity. Baseball throwing velocity scores were correlated to the following tests: medicine ball (MB) scoop toss and squat throw, bilateral and unilateral vertical jumps, single and triple broad jumps, hop and stop in both directions, lateral to medial jumps, 10- and 60-yd sprints, and both left and right single-leg 10-yd hop for speed in 42 college baseball players. A multiple regression analysis (forward method), assessing the relationship between shuffle and stretch throwing velocities and lower-body field test results determined that right-handed throwing velocity from the stretch position was most strongly predicted by lateral to medial jump right (LMJR) and body weight (BW; R2 = 0.322), whereas lateral to medial jump left (LMJL; R2 = 0.688) predicted left stretch throw. Right-handed shuffle throw was most strongly predicted by LMJR and MB scoop (R2 = 0.338), whereas LMJL, BW, and LMJR all contributed to left-handed shuffle throw (R2 = 0.982). Overall, this study found that lateral to medial jumps were consistently correlated with high throwing velocity in each of the throwing techniques, in both left-handed and right-handed throwers. This is the first study to correlate throwing velocity with a unilateral jump in the frontal plane, mimicking the action of the throwing stride

    SQUATS PERFORMED ON AN UNSTABLE SURFACE ELICIT HIGHER TRANSVERSAL FORCE OUTPUT COMPARED TO MORE STABLE SQUATS

    Get PDF
    Instability resistance training (RT) or exercising within an unstable environment is a popular training modality and frequently used in training, rehabilitation and prevention settings. Yet, due to the reported reduced force output during exercising within unstable condition, instability RT is said to lack the necessary overload to induce meaningful effects. However, empirical evidence of interventions suggests otherwise. The aim of this study was to systematically analyse instability RT vs. stable RT and discuss potential mechanisms. Therefore, we analysed squats within unstable and stable environments and calculated transversal and vertical forces. Greater transversal plane ground reaction forces were observed while performing squats on the unstable surface (p = .013; d = 1.88, CI-95% [0.33, 3.39]). In contrast, vertical force output remained similar for both conditions (p = .764; d = 0.14, CI-95% [-0.77, 1.02])

    Canadian Society for Exercise Physiology Position Paper: Resistance Training in Children and Adolescents

    Get PDF
    Many position stands and review papers have refuted the myths associated with resistance training (RT) in children and adolescents. With proper training methods, RT for children and adolescents can be relatively safe and improve overall health. The objective of this position paper and review is to highlight research and provide recommendations in aspects of RT that have not been extensively reported in the pediatric literature. In addition to the well-documented increases in muscular strength and endurance, RT has been used to improve function in pediatric patients with cystic fibrosis, cerebral palsy and burn victims. Increases in children’s muscular strength have been attributed primarily to neurological adaptations due to the disproportionately higher increase in muscle strength than in muscle size. Although most studies using anthropometric measures have not shown significant muscle hypertrophy in children, more sensitive measures such as magnetic resonance imaging and ultrasound have suggested hypertrophy may occur. There is no minimum age for RT for children. However the training and instruction must be appropriate for children and adolescents involving a proper warm-up, cool-down and an appropriate choice of exercises. It is recommended that low-to-moderate intensity resistance should be utilized 2-3 times per week on non-consecutive days, with 1-2 sets initially, progressing to 4 sets of 8-15 repetitions for 8-12 exercises. These exercises can include more advanced movements such as Olympic style lifting, plyometrics and balance training, which can enhance strength, power, co-ordination and balance. However specific guidelines for these more advanced techniques need to be established for youth. In conclusion, a RT program that is within a child’s or adolescent’s capacity, involves gradual progression under qualified instruction and supervision with appropriately sized equipment can involve more advanced or intense RT exercises which can lead to functional (i.e. muscular strength, endurance, power, balance and co-ordination) and health benefits

    Effect of head and limb orientation on trunk muscle activation during abdominal hollowing in chronic low back pain

    Get PDF
    Background: Individuals with chronic low back pain (CLBP) have altered activations patterns of the anterior trunk musculature when performing the abdominal hollowing manœuvre (attempt to pull umbilicus inward and upward towards the spine). There is a subgroup of individuals with CLBP who have high neurocognitive and sensory motor deficits with associated primitive reflexes (PR). The objective of the study was to determine if orienting the head and extremities to positions, which mimic PR patterns would alter anterior trunk musculature activation during the hollowing manoeuvre. Methods. This study compared surface electromyography (EMG) of bilateral rectus abdominis (RA), external oblique (EO), and internal obliques (IO) of 11 individuals with CLBP and evident PR to 9 healthy controls during the hollowing manoeuvre in seven positions of the upper quarter. Results: Using magnitude based inferences it was likely (\u3e75%) that controls had a higher ratio of left IO:RA activation with supine (cervical neutral), asymmetrical tonic neck reflex (ATNR) left and right, right cervical rotation and cervical extension positions. A higher ratio of right IO:RA was detected in the cervical neutral and ATNR left position for the control group. The CLBP group were more likely to show higher activation of the left RA in the cervical neutral, ATNR left and right, right cervical rotation and cervical flexion positions as well as in the cervical neutral and cervical flexion position for the right RA. Conclusions: Individuals with CLBP and PR manifested altered activation patterns during the hollowing maneuver compared to healthy controls and that altering cervical and upper extremity position can diminish the group differences. Altered cervical and limb positions can change the activation levels of the IO and EO in both groups. © 2014 Parfrey et al.; licensee BioMed Central Ltd

    Canadian Society For Exercise Physiology Position Stand on the Acute Effects of Muscle Stretching on Physical Performance, Range of Motion and Injury Incidence in Healthy Active Individuals

    Get PDF
    Muscle stretching in some form appears to be of greater benefit than cost (in terms of performance, ROM and injury outcomes) but the type of stretching chosen and the make-up of the stretch routine will depend on the context within which it is used. SS and PNF stretching are not recommended if prolonged (>60s total per individual muscle) stretching is employed within 5 min of an activity without subsequent dynamic activity (e.g. if prolonged stretching immediately precedes training or competition), unless the requirements for increases in ROM and/or decrease in (specifically) muscle injury outweigh the requirement for optimum physical performance. Injury reduction appears to require more than 5 min of total stretching of multiple task-related muscle groups. However, when an optimal pre-event warm-up with an appropriate duration of stretching is completed (i.e. initial aerobic activity, stretching component, task- or activity-specific dynamic activities) the benefits of SS and PNF stretching for increasing ROM and reducing muscle injury risk at least balance, or may outweigh, any possible cost of performance decrements. SS also appears to enhance performance in activities performed at long muscle lengths. DS may induce moderate performance enhancements and may be included in the stretching component to provide task-specific ROM increases and facilitation of dynamic SSC performance when performed soon before an activity, and/or when a full pre-activity routine is not completed; however there is no evidence as to whether it influences injury risk. Furthermore, while the literature examining the effect of stretching on physical performance is extensive, the literature examining injury risk is much smaller, and thus more research needs to investigate the effect of muscle stretching on injury risk

    Effect of Exercise-Related Factors on the Perception of Time

    Get PDF
    The concept of time whether considered through the lenses of physics or physiology is a relative measure. Alterations in time perception can have serious implications in sport, fitness and work. Accurate perception of time is an important skill with many time constrained sports (i.e., basketball, North American football, tennis, gymnastics, figure skating, ice hockey, and others), and work environments (i.e., workers who need to synchronize their actions such as police and military). In addition, time distortions may play a role in exercise adherence. Individuals may be disinclined to continue with healthy, exercise activities that seem protracted (time dilation). Two predominant theories (scalar expectancy theory and striatal beat frequency model) emphasize the perception of the number of events in a period and the role of neurotransmitters in activating and coordinating cortical structures, respectively. A number of factors including age, sex, body temperature, state of health and fitness, mental concentration and exercise intensity level have been examined for their effect on time perception. However, with the importance of time perception for work, sport and exercise, there is limited research on this area. Since work, sports, and exercise can involve an integration of many of these aforementioned factors, they are interventions that need further investigations. The multiplicity of variables involved with work, sport, and exercise offer an underdeveloped but fruitful field for future research. Thus, the objective of this review was to examine physiological and psychological factors affecting human perception of time and the mechanisms underlying time perception and distortion with activity

    Prolonged static stretching increases the magnitude and decreases the complexity of knee extensor muscle force fluctuations.

    Get PDF
    Static stretching decreases maximal muscle force generation in a dose-response manner, but its effects on the generation of task-relevant and precise levels of submaximal force, i.e. force control, is unclear. We investigated the effect of acute static stretching on knee extensor force control, quantified according to both the magnitude and complexity of force fluctuations. Twelve healthy participants performed a series of isometric knee extensor maximal voluntary contractions (MVCs) and targeted intermittent submaximal contractions at 25, 50 and 75% MVC (3 x 6 seconds contraction separated by 4 seconds rest, with 60 seconds rest between each intensity) prior to, and immediately after, one of four continuous static stretch conditions: 1) no stretch; 2) 30-second stretch; 3) 60-second stretch; 4) 120-second stretch. The magnitude of force fluctuations was quantified using the standard deviation (SD) and coefficient of variation (CV), while the complexity of fluctuations was quantified using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α. These measures were calculated using the steadiest 5 seconds of the targeted submaximal contractions at each intensity (i.e., that with the lowest SD). Significant decreases in MVC were evident following the 30, 60 and 120-second stretch conditions (all P < 0.001), with a significant correlation observed between stretch duration and the magnitude of decrease in MVC (r = -0.58, P < 0.001). The 120-second stretch resulted in significant increases in SD at 50% MVC (P = 0.007) and CV at 50% (P = 0.009) and 75% MVC (P = 0.005), and a significant decrease in ApEn at 75% MVC (P < 0.001). These results indicate that the negative effects of prolonged static stretching extend beyond maximal force generation tasks to those involving generation of precise levels of force during moderate- to high-intensity submaximal contractions

    Knee joint neuromuscular activation performance during muscle damage and superimposed fatigue

    Get PDF
    This study examined the concurrent effects of exercise-induced muscle damage and superimposed acute fatigue on the neuromuscular activation performance of the knee flexors of nine males (age: 26.7 ± 6.1yrs; height 1.81 ± 0.05m; body mass 81.2 ± 11.7kg [mean ± SD]). Measures were obtained during three experimental conditions: (i) FAT-EEVID, involving acute fatiguing exercise performed on each assessment occasion plus a single episode of eccentric exercise performed on the first occasion and after the fatigue trial; (ii) FAT, involving the fatiguing exercise only and; (iii) CON consisting of no exercise. Assessments were performed prior to (pre) and at lh, 24h, 48h, 72h, and 168h relative to the eccentric exercise. Repeated-measures ANOVAs showed that muscle damage within the FAT-EEVID condition elicited reductions of up to 38%, 24%) and 65%> in volitional peak force, electromechanical delay and rate of force development compared to baseline and controls, respectively (F[io, 80] = 2.3 to 4.6; p to 30.7%>) following acute fatigue (Fp; i6] = 4.3 to 9.1; p ; Fp, iq = 3.9; p <0.05). The safeguarding of evoked muscle activation capability despite compromised volitional performance might reveal aspects of capabilities for emergency and protective responses during episodes of fatigue and antecedent muscle damaging exercise

    Effects of acute and chronic stretching on pain control

    Get PDF
    ABSTRACT While muscle stretching has been commonly used to alleviate pain, reports of its effectiveness are conflicting. The objective of this review is to investigate the acute and chronic effects of stretching on pain, including delayed onset muscle soreness. The few studies implementing acute stretching protocols have reported small to large magnitude decreases in quadriceps and anterior knee pain as well as reductions in headache pain. Chronic stretching programs have demonstrated more consistent reductions in pain from a wide variety of joints and muscles, which has been ascribed to an increased sensory (pain) tolerance. Other mechanisms underlying acute and chronic pain reduction have been proposed to be related to gate control theory, diffuse noxious inhibitory control, myofascial meridians, and reflex-induced increases in parasympathetic nervous activity. By contrast, the acute effects of stretching on delayed onset muscle soreness are conflicting. Reports of stretch-induced reductions in delayed onset muscle soreness may be attributed to increased pain tolerance or alterations in the muscle's parallel elastic component or extracellular matrix properties providing protection against tissue damage. Further research evaluating the effect of various stretching protocols on different pain modalities is needed to clarify conflicts within the literature

    Acute Effects of Massage or Active Exercise in Relieving Muscle Soreness: Randomized Controlled Trial

    Get PDF
    Andersen, LL, Jay, K, Andersen, CH, Jakobsen, MD, Sundstrup, E, Topp, R, and Behm, DG. Acute effects of massage or active exercise in relieving muscle soreness: randomized controlled trial. J Strength Cond Res 27(12): 3352–3359, 2013—Massage is commonly believed to be the best modality for relieving muscle soreness. However, actively warming up the muscles with exercise may be an effective alternative. The purpose of this study was to compare the acute effect of massage with active exercise for relieving muscle soreness. Twenty healthy female volunteers (mean age 32 years) participated in this examiner-blind randomized controlled trial (ClinicalTrials.gov NCT01478451). The participants performed eccentric contractions for the upper trapezius muscle on a Biodex dynamometer. Delayed onset muscle soreness (DOMS) presented 48 hours later, at which the participants (a) received 10 minutes of massage of the trapezius muscle or (b) performed 10 minutes of active exercise (shoulder shrugs 10 × 10 reps) with increasing elastic resistance (Thera-Band). First, 1 treatment was randomly applied to 1 shoulder while the contralateral shoulder served as a passive control. Two hours later, the contralateral resting shoulder received the other treatment. The participants rated the intensity of soreness (scale 0–10), and a blinded examiner took measures of pressure pain threshold (PPT) of the upper trapezius immediately before treatment and 0, 10, 20, and 60 minutes after treatment 48 hours posteccentric exercise. Immediately before treatment, the intensity of soreness was 5.0 (SD 2.2) and PPT was 138 (SD 78) kPa. In response to treatment, a significant treatment by time interaction was found for the intensity of soreness (p \u3c 0.001) and PPT (p \u3c 0.05). Compared with control, both active exercise and massage significantly reduced the intensity of soreness and increased PPT (i.e., reduced pain sensitivity). For both types of treatment, the greatest effect on perceived soreness occurred immediately after treatment, whereas the effect on PPT peaked 20 minutes after treatment. In conclusion, active exercise using elastic resistance provides similar acute relief of muscle soreness as compared with that using massage. Coaches, therapists, and athletes can use either active warm-up or massage to reduce DOMS acutely, for example, to prepare for competition or strenuous work, but should be aware that the effect is temporary, that is, the greatest effects occurs during the first 20 minutes after treatment and diminishes within an hour
    • …
    corecore